y

Debugging
on Mac OS X

Session 909

y

Debugging
on Mac OS X

Dave Payne
Manager, Development Environment Group

What You Will Learn

* Approaches to
* Debugging wit

debugging on Mac OS X
n Project Builder

* Debugging wit

n CodeWarrior Pro 8

* Advanced debugging with GDB

Mac OS X Debugging
Architecture

Codae\vvarrior

Target Application

Why Did My App Crash?

* Turn on crash logging in Console
» Applications —> Utilities —> Console

"? Enable crash reporting

Automatically display crash logs

Crash Logs in Console

* Crash logs appear in:

« Separate window for each app in Console
o Latest crash is at end of window
« Caution—content retained across reboots!

e /Library/Logs/<<appname > .crashlog
* Logs include:
e Stack backtrace for all threads
» Register state for thread that crashed
» File and line number, if binary has debug symbols

What’s Stomping Memory?

* Hardware watchpoints in gdb
* MallocDebug “helps” detect such problems

Memory Stomper
Analysis With MallocDebug

* Encourages badly behaved programs to crash
» Attach to program with gdb

* Overwrites freed memory

* Adds guard words before and after blocks
* Writes warning messages to Console

* Read documentation in MallocDebug

Why Is My App Hung?

* Use ‘sample’ command line tool
 Command line version of Sampler

» Works with any binary

» Examples:
e sample <pid> <duration>
e sample myapp 10
» Qutput in /tmp/<app> <pid>.sample.txt

*‘odb attach’

¢

y

Debugging
on Project Builder

Rab Hagy
Project Builder Debugging Engineer

Project Builder Debugging:
What You Will Learn

* Project Builder Debugging Overview

* Configuring your project for debugging
» Build settings
» Executable settings

*Viewing opaque data types

Project Builder Debugging
Overview

* Project Builder IDE Debugger Framework
o GUI for threads, stacks, variables and PC
» Breakpoints: persistent, source line, symbolic
» Cross-project debugging
* Plugins for specific languages
* AppleScript
e Java (using wire-protocol)
o C-based languages (using GDB)

Build for Debugging

* Building Related Projects
» Use a common build folder for related projects
e Solves build-time and run-time issues
e “Project—>Show Info” to set folder
* Compiler Settings For Debugging
» Enable generation of symbolic information

» Use Optimization Level Zero (“-O0”)
« Tip: Verify both Build Style and Target Settings

Executables

* Program which is run or debugged

e Settings for Arguments, Environment, etc.
* Implicitly created by Application and Tool targets
* Active Target separate from Active Executable

» E.g. build shared library, run App that uses it

» Tip: customize toolbar with Active Executable
pop-up button

Custom Executables

* External program; not part of your project
e E.g., program which loads your Plug-in

* Java Tool and Applet targets have default
custom executables

y

-
Demo

Executables

David Ewing
Project Builder Engineer

Opaque Data Types

* Types without exposed implementation structure
» Examples: Carbon, CoreFoundation, Foundation

» No symbolic information for types
« “Opaque” even to debugger!

» Have functional interface
* Use functional interface to types to show content
* First step: NSString
» Show content and dynamic type of NSStrings
» Validates ObjC Pointers

’

Preview: Viewing Data

* Expression Window

» Add/Remove expression
e Global
 Pointer reference

 Evaluated in Ul current context
* Variables in own window

Demo

Data Viewing

y

Debugging in
CodeWarrior Pro 8

ZCHEMEN
Director of Debugging, Metrowerks

CodeWarrior Debugging

* CodeWarrior for Mac OS, v8 new
debugger features

» Performance improvements
» Faster debugging with new linker

e Smart variable formatting (SVF)
o Variable formatter
o Custom data viewers

CodeWarrior Debugging (Cont.)

* More new debugger features

» Improved memory window
and register browser

» Event points—magic breakpoints
* Log point
« Pause point
« Skip point
e Script point
» Sound point

s

-
Demo

CodeWarrior on Mac OS X Debugging

ZCHEMEN
Director of Debugging, Metrowerks

y

Advanced GDB Features

Jim Ingham
Senior Debugging Engineer

Debugging With GDB

* Goals

» Developers don’t need to know GDB
e GDB console available for advanced users

* Why would you use GDB?

 Good low-level debugger

« Situations not yet covered in the GUI

« Scriptable—looping, conditions, and variables
« Extensible—user commands, plug-ins

* GDB manual is in:
/Developer/Documentation/DeveloperTools/gdb/“gdb_toc.html”

Apple Enhancements to GDB

* Objective-C support
* Shared library support

« ‘future-break’
« ‘set sharedlibrary load-rules dyld AppKit none’

* Persistent breakpoints (‘save-breakpoints’)

* Plug-in mechanism
« Write in native code—C /C+ + / Objective-C
» Very fast and flexible
Errors in extension will crash GDB
Interface will likely change
See GPL for redistribution terms
MacsBug available in /usr/libexec/gdb/plugins/MacsBug

’

Augmenting Project Builder

® Access to features for which GUI
is not (yet) available

 Remote debugging
» Watchpoints
» Kernel debugging

Remote Debugging

* Advantages
» Can use debugger without deactivating App
» Good for debugging full-screen applications
* Steps:
» Start your application on the remote machine
e ssh into the remote machine

e ‘attach’ to application
 Use AppName<Tab> to lookupPID . . -

* Project Builder support planned in the future

Watchpoints

*We now have watchpoint support—
using page protection

* Fast, unless you are pounding on that page
* Use the GDB “watch” command
* Watch any expression, or give it a raw address

Watchpoints (Cont.)

* Caveats
» It does not work well for stack objects

» Because it is a “page protection”scheme, if
you watch a page passed into a kernel call,
and the call tries to write to the page,
the call will fail

» E.g., watching a buffer that you are passing
to “read” will not currently work

Kernel Debugging

* Two-machine solution (KDP protocol)
* Kernel looks like any other program
* Debugging agent in kernel talks to GDB

» “Hard” kernel lock-ups can hang agent,
causing gdb to lose connection to the kernel

 You can now “detach” from the kernel, and
reconnect from another machine

* /Developer/Documentation/Kernel/Tutorials
/KEXTutorials/index.html

Advanced Features

* Expression evaluator
* Control constructs
* User-defined commands

Expression Evaluator

*You can call any function in the target
* Functions CHANGE target state

*You can evaluate any expression in the
current source language

*You can store values in “convenience variables”
which have the form “$name”

* Examples:

. call (void) DebugPrintWindowList ()
. set $oldVal = ((Bar *) foo)->someData

Control Constructs

*You can repeat commands with “while”
e Syntax:

while <Any valid expression>
<any valid gdb commands>
end

*You can do tests with “if”
e Syntax:

If <any valid expression>
<any gdb commands>
end

Example: Linked Lists . .

* Suppose you have:
struct linkedList {
Int someData;

struct linkedList *next;
} *listHead;

* Once you get a long list inspecting the list in
the debugger is very tedious

* Can also use this technique for OO collections
like NSArray, if there is an iterator method you

can call from gdb

o Harder for C+ + STL where you need to create an
iterator—you cannot create C+ + objects from gdb

Example: Linked Lists

® Do:

(gdb) set $ptr = listHead

(gdb) while $ptr =0
printf “Ptr: 0x%lIx has value %d\n”, $ptr, $ptr->someData
set $ptr = $ptr->next

end

Ptr: 0x54a0 has value 9

Ptr: 0x5490 has value 8

Ptr: 0x5480 has value 7

Ptr: 0x5470 has value 6

Ptr: 0x5460 has value 5

Ptr: 0x5450 has value 4

® Use the “printf” command to make readable output:

printf <C format string>, <args>, ...

Linked Lists (Cont.)

® Use “if” to hunt out particular elements:
(gdb) set $ptr = listHead
(gdb) while $ptr =0
if $ptr->someData ==
printf “Element at 0x%lIx = %d\n”, $ptr, $ptr->someData
end
set $ptr = $ptr->next
end
Element at 0x5460 = 5

® Rummaging through more complex collections works the
same way, but you would get the next object with a “next”
method of some sort

® Also useful with C Arrays, using an index not a pointer

User-Detined Commands

® Complex scripts can be made into user-defined commands:

(gdb) define findListElement
set $ptr = listHead
while $ptr 1= 0
if $ptr->someData == $arg0
printf "Element at 0x%lIx = %d\n", $ptr, $ptr->someData
end
set $ptr = $ptr->next
end
end
(gdb) findListElement 5
Element at 0x5460 = 5

® You can put this in your .gdbinit file, and it will get read in
automatically—or you can put it in some other file, and use
the gdb “source” command

Summary

* Delivering on our commitment to great
development tools

* Powerful debugging support in Project Builder
* Additional improvements on the way
* Please give us your feedback

Technical Documentation

* Command line tools have man pages
e At the terminal prompt: man <toolname>

* Reference docs in
/Developer/Documentation/DevTools fOr:

. odb
e MachORuntime

For More Information

* Apple Developer Connection tools page
http://developer.apple.com/tools/

* Project Builder page
http://developer.apple.com/tools/projectbuilder/

* Apple Developer Connection downloads
http:/connect.apple.com/

* Bug Reporting
http://developer.apple.com/bugreporter/

Roadmap

San Jose Airport

Directlons to San Jose Atrport

Exit SjCC parking onto Almaden Blvd
ke ':'E-L_fjht

Make Left onto Park Ave

Enter quadalupe Parkwa Y (HWYg7) North

Make Left onto Alrport Par RWAY entrance

Who to Contact

Godfrey DiGiorgi
Technology Manager, Development Tools
ramarren@apple.com

Mailing Lists at Apple
http://lists.apple.com
projectbuilder-users

Development Tools Engineering Feedback
macosx-tools-feedback@group.apple.com

’

http://developer.apple.com/wwdc2002/urls.html '

Godfrey DiGiorgi
Technology Manager, Development Tools
ramarren@apple.com

http://developer.apple.com/wwdc2002/urls.html

& WWDC2002

& WWDC2002

& WWDC2002

